ΓΟCT 61-75

Группа Л52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕАКТИВЫ

КИСЛОТА УКСУСНАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

REAGENTS. ACETIC ACID. SPECIFICATIONS

MKC 71.040.30 ΟΚΠ 26 3411 0470 02

Дата введения 1975-04-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 24 марта 1975 г. N 724 дата введения установлена 01.04.75

Ограничение срока действия снято по Протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ВЗАМЕН ГОСТ 61-69

ИЗДАНИЕ (октябрь 2006 г.) с Изменениями N 1, 2, 3, утвержденными в марте 1978 г., декабре 1979 г., октябре 1986 г. (ИУС 3-78, 2-80, 1-87).

Переиздание (по состоянию на апрель 2008 г.)

Настоящий стандарт распространяется на реактив - уксусную кислоту, представляющую собой прозрачную, бесцветную, легковоспламеняющуюся жидкость с резким запахом, смешивающуюся с водой, этиловым спиртом в любых соотношениях.

Показатели технического уровня, установленные настоящим стандартом, предусмотрены для высшей категории качества.

Стандарт содержит все требования стандарта СЭВ 5375-85.

В стандарте не предусмотрены требования к продукту квалификации "чистый", ужесточены нормы по ряду показателей, включены разделы: "Требования безопасности" и "Гарантии изготовителя" (см. приложение о соответствии требований настоящего стандарта требованиям стандарта СЭВ).

 $_{\Phi$ ормула $^{\mathrm{CH}_{3}}\mathrm{COOH}$

Молекулярная масса (по международным атомным массам 1971 г.) - 60,05.

(Измененная редакция, Изм. N 3).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Уксусная кислота должна быть изготовлена в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.2. По физико-химическим показателям уксусная кислота должна соответствовать требованиям и нормам, приведенным в табл.1.

Таблица 1

Наименование показателя	Норма		
	Химически	Химически	Чистая для
	чистая ледяная	чистая (х.ч.)	анализа (ч.д.а.)
	(х.ч. ледяная)		
	ОКП 26 3411	ОКП 26 3411	ОКП 26 3411
	048308	047310	047200
1. Внешний вид	Прозрачная бесцветная жидкость		
2. Массовая доля уксусной кислоты $\mathrm{CH_3COOH}$), %,	99,8	99,5	99,5
не менее			
3. Температура кристаллизации, °С	16,3-16,7 Не нормируется		
4. Массовая доля нелетучего остатка, %, не более	0,001	0,001	0,002
5. Массовая доля сульфатов (\mathbb{SO}_4), %, не более	0,0001	0,0001	0,0002
6. Массовая доля хлоридов (С1), %, не более	0,0001	0,0001	0,0002
7. Массовая доля железа (Fe), %, не более	0,00002	0,00002	0,00001
8. Массовая доля тяжелых металлов ₽ь), %, не	0,00003	0,00005	0,0001
более			
9. Массовая доля мышьяка (Аѕ), %, не более	0,000015	0,00005	0,00005
10. Массовая доля веществ, восстанавливающих	0,003	0,003	0,005
двухромовокислый калий в пересчете на кислород ℚ			
), %, не более			
11. Массовая доля веществ, восстанавливающих	0,003	0,005	0,005
марганцовокислый калий в пересчете на муравьиную			(0,02)
кислоту (НСООН), %, не более			
12. Массовая доля ацетальдегида ($\mathrm{CH_{3}CHO}$), %, не	0,001	0,002	0,003
более			
13 Массовая доля уксусного ангидрида $(\mathrm{CH_3CO})_2\mathrm{O}$,	0,03	0,03 Не нормируется	
%, не более			
14. Проба на разбавление	Должна выдерживать испытание по п.3.14		

Примечания:

- 1. Если массовая доля уксусного ангидрида не превышает 0,001%, к квалификации реактива прибавляют слова "без ангидрида".
 - 2. Уксусную кислоту с нормами, приведенными в скобках, допускается выпускать до 01.01.95.

Разд.1. (Измененная редакция, Изм. N 3).

2А. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2а.1. Уксусная кислота относится к 3-му классу опасности по ГОСТ 12.1.007-76.

Предельно допустимая концентрация паров уксусной кислоты в воздухе рабочей зоны (ПДК) - 5 мг/м 3 .

Определение паров уксусной кислоты в воздухе проводят иодометрическим методом.

При превышении предельно допустимой концентрации пары уксусной кислоты действуют раздражающе на слизистую оболочку верхних дыхательных путей; уксусная кислота вызывает также ожоги кожи.

2а.2. При работе с уксусной кислотой следует применять индивидуальные средства защиты (фильтрующие противогазы марок В и БКФ), а также соблюдать правила личной гигиены.

Не допускается попадание уксусной кислоты внутрь организма.

Первая помощь при ожогах - обильное промывание водой.

2а.3. Уксусная кислота - легковоспламеняющаяся жидкость с резким специфическим запахом.

Температура кипения, °С	118,1
Температура вспышки паров, С	38
Температура воспламенения, °С	68
Температура самовоспламенения, °С	454
Область воспламенения, объемная доля, %:	
нижний предел	3,3
верхний предел	22
Температурные пределы воспламенения, °C:	
нижний предел	35
верхний предел	76

Категория и группа взрывоопасной смеси паров уксусной кислоты с воздухом ПА-Т1 (ГОСТ 12.1.011-78*).

Работы с уксусной кислотой следует проводить вдали от огня. При загорании для тушения следует применять пены ПО-1Д, ПО-3АИ, "Сампо", газовые и порошковые составы.

2а.4. Помещения, в которых проводят работы с уксусной кислотой, должны быть оборудованы общей приточновытяжной механической вентиляцией.

Анализ уксусной кислоты следует проводить в вытяжном шкафу.

Разд.2a. (Введен дополнительно, Изм. N 3).

2. ПРАВИЛА ПРИЕМКИ

- 2.1. Правила приемки по ГОСТ 3885-73.
- 2.2. Определение содержания сульфатов, тяжелых металлов, веществ, восстанавливающих марганцовокислый калий, ацетальдегида и пробы на разбавление изготовитель проводит только по требованию потребителя и в продукте, предназначенном для экспорта.

(Измененная редакция, Изм. N 3).

3. МЕТОДЫ АНАЛИЗА

3.1а. Общие указания по проведению анализа - по ГОСТ 27025-86.

(Введен дополнительно, Изм. N 2).

3.1. Пробы отбирают по ГОСТ 3885-73. Масса средней пробы должна быть не менее 2 кг (1,9 дм 3).

^{*} На территории Российской Федерации действуют ГОСТ Р 51330.2-99, ГОСТ Р 51330.5-99, ГОСТ Р 51330.11-99, ГОСТ Р 51330.19-99.

3.2а. Определение внешнего вида

Внешний вид определяют при 20 °C визуально сравнением с дистиллированной водой по ГОСТ 14871-76. При этом анализируемый продукт не должен иметь опалесценции и не должен содержать механических частиц.

(Введен дополнительно, Изм. N 3).

3.2. Определение массовой доли уксусной кислоты алкалиметрическим титрованием

3.2.1. Реактивы, растворы и посуда

Вода дистиллированная, не содержащая углекислоты; готовят по ГОСТ 4517-87;

натрия гидроокись по ГОСТ 4328-77, раствор концентрации c(NaOH) = 0,1 моль/дм³ (0,1 н.) готовят по ГОСТ 25794.1-83:

спирт этиловый ректификованный технический, высшего сорта по ГОСТ 18300-87;

фенолфталеин (индикатор) по ТУ 6-09-5360-87*, спиртовой раствор с массовой долей 1%, готовят по ГОСТ 4919.1-77;

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.

бюретка 1-2-50 по ГОСТ 29252-91;

колба Кн-1-100-14/23 по ГОСТ 25336-82;

цилиндр 1-25 по ГОСТ 1770-74;

весы лабораторные равноплечие 2-го класса модели ВЛР-200 по ГОСТ 24104-88* или любого аналогичного типа с ценой деления 0,0001 г.

3.2.2. Проведение анализа

 $25\ \mathrm{cm}^3$ дистиллированной воды помещают в коническую колбу с притертой пробкой вместимостью $100\ \mathrm{cm}^3$, взвешивают, вносят $0.2\ \mathrm{r}$ продукта и колбу взвешивают (результаты всех взвешиваний записывают с точностью до четвертого десятичного знака), тщательно перемешивают, титруют раствором гидроокиси натрия в присутствии фенолфталеина до появления неисчезающей слабо-розовой окраски раствора.

(Измененная редакция, Изм. N 3).

3.2.3. Обработка результатов

Массовую долю уксусной кислоты (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0,006005 \cdot 100}{m},$$

где *т* - масса навески продукта, г;

V - объем раствора гидроокиси натрия концентрации точно 0,1 моль/дм 3 (0,1 н.), израсходованный на титрование, см 3 ;

^{*} С 1 июля 2002 г. действует ГОСТ 24104-2001.

0,006005 - количество уксусной кислоты, соответствующее 1 см³ раствора гидроокиси натрия концентрации точно 0,1 моль/дм (0,1 н.), г.

За результат анализа принимают среднеарифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,15% при доверительной вероятности P=0,95.

(Измененная редакция, Изм. N 3).

3.3а. Определение массовой доли уксусной кислоты по температуре кристаллизации

Определение проводят по п.3.3 настоящего стандарта и по ГОСТ 18995.5-73.

Массовая доля уксусной кислоты в процентах в зависимости от температуры кристаллизации указана в табл.2.

Таблица 2

Температура кристаллизации, °С	Массовая доля уксусной кислоты, %
13,56	98,2
13,71	98,3
13,87	98,4
14,02	98,5
14,18	98,6
14,35	98,7
14,49	98,8
14,64	98,9
14,82	99,0
15,37	99,3
15,56	99,4
15,75	99,5
15,94	99,6
16,13	99,7
16,32	99,8
16,51	99,9
16,70	100,0

При разногласиях в оценке массовой доли уксусной кислоты, а также при анализе продукта квалификации "х.ч. ледяная", определение проводят по температуре кристаллизации.

(Введен дополнительно, Изм. N 3).

3.3. Определение температуры кристаллизации

Температуру кристаллизации уксусной кислоты определяют по ГОСТ 18995.5-73. При этом подготовку к анализу проводят следующим образом: прибор с продуктом помещают в стакан с водой, имеющей температуру 5 °C - 7 °C. Продукт в приборе охлаждают до 10 °C - 13 °C и, не вынимая из стакана, осторожно помешивают, не касаясь дна и стенок пробирки, до появления первых кристаллов кислоты.

В момент кристаллизации кислоты температура резко повышается и, достигнув определенного максимума, остается на этом уровне в течение некоторого времени. За температуру кристаллизации, отмеченную с погрешностью 0,1 °C, принимают высшую точку подъема температуры.

3.4. Определение массовой доли нелетучего остатка

Определение проводят по ГОСТ 27026-86 из объема 95 см³ (100 г) в кварцевой или платиновой чашке.

Остаток растворяют в 1 см 3 раствора соляной кислоты (ГОСТ 3118-77) с массовой долей 25% и 15 см 3 воды, переносят раствор количественно в мерную колбу вместимостью 100 см 3 (ГОСТ 1770-74), доводят объем раствора водой до метки и перемешивают. Раствор сохраняют для определения массовой доли железа и тяжелых металлов.

(Измененная редакция, Изм. N 2, 3).

3.4.1, 3.4.2. (Исключены, Изм. N 2).

3.5. Определение массовой доли сульфатов

Определение проводят по ГОСТ 10671.5-74. При этом проводят подготовку к анализу: 50,0 г (47,6 см ³) анализируемого продукта помещают в платиновую или кварцевую чашку, прибавляют 0,2 г углекислого натрия (ГОСТ 83-79) и выпаривают досуха. Остаток после выпаривания растворяют³ в 15 см воды (при необходимости раствор фильтруют через плотный беззольный фильтр) и доводят объем раствор³а до 20 см.

Далее анализ проводят визуально-нефелометрическим методом с использованием затравочного раствора.

Продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 30 мин на темном фоне опалесценция анализируемого раствора будет не интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для продукта химически чистый ледяной и химически чистый - 0,05 мг $^{{
m SO}_4}$,

для продукта чистый для анализа - 0,10 мг $^{{
m SO}_4}$.

Допускается проводить определение визуально-нефелометрическим методом без выпаривания с использованием затравочного раствора. При этом $10.0 \, \Gamma$ (9,5 см 3) анализируемого продукта помещают в коническую колбу вместимостью $50 \, \text{см}^3$ (ГОСТ 25336-82), разбавляют водой до $37 \, \text{см}^3$, прибавляют $3 \, \text{см}^3$ раствора желатина, отмеренных пипеткой вместимостью $10 \, \text{см}$ (ГОСТ 29169-91) и перемешивают. Отдельно в пробирку помещают $0.1 \, \text{cm}^3$ раствора, содержащего $0.001 \, \text{sm}_4$ прибавляют $1 \, \text{cm}^3$ раствора соляной кислоты концентрации $\frac{c \, (\text{HCl})}{1} = 1 \, \text{моль/дм}^3$, $3 \, \text{cm}^3$ раствора хлористого бария, отмеренных пипеткой, и встряхивают в течение $1 \, \text{мин}$. Затем содержимое пробирки приливают к анализируемому раствору, ополаскивают пробирку небольшим объемом воды в колбу, доводят объем раствора в колбе водой до $50 \, \text{cm}^3$ и перемешивают.

Наблюдаемая через 1 ч опалесценция анализируемого раствора не должна быть интенсивнее опалесценции раствора сравнения, приготовленного одновременно таким же образом и содержащего в таком же объеме:

для продукта химически чистый ледяной и химически чистый - 0,01 мг $^{\mathrm{SO}_4}$,

для продукта чистый для анализа - 0,02 мг $^{{
m SO}_4}$

и те же объемы растворов соляной кислоты, желатина и хлористого бария.

При разногласиях в оценке массовой доли сульфатов определение проводят методом с выпариванием продукта в присутствии углекислого натрия и использованием затравочного раствора.

3.6. Определение массовой доли хлоридов

Определение проводят по ГОСТ 10671.7-74 визуально-нефелометрическим методом в объеме 40 см 3 с прибавлением 2 см 3 раствора азотной кислоты.

Масса навески продукта - 10,00 г (соответствует 9,5 см 3).

Продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 10 мин на темном фоне опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для продукта химически чистый ледяной и химически чистый - 0,01 мг $^{\rm Cl}$, для продукта чистый для анализа - 0,02 мг $^{\rm Cl}$ и те же количества реактивов.

3.7. Определение массовой доли железа

Определение проводят по ГОСТ 10555-75 2,2'-дипиридиловым методом. При этом используют 20,0 см 3 раствора, полученного по п.3.4 (соответствует 20,00 г анализируемого продукта), отмеренных пипеткой вместимостью 20 см 3 (ГОСТ 29169-91).

Допускается проводить определение роданидным методом из 20.0 cm^3 раствора, приготовленного по п.3.4, или 1.10-фенантролиновым методом без предварительного выпаривания из массы навески анализируемого продукта 20.00 r (соответствует 19.0 cm^3).

Продукт считают соответствующим требованиям настоящего стандарта, если масса железа не будет превышать:

для препарата химически чистый ледяной и химически чистый - 0,004 мг,

для препарата чистый для анализа - 0,02 мг.

При разногласиях в оценке массовой доли железа определение проводят фотоколориметрическим 2,2'-дипиридиловым методом.

3.5-3.7. (Измененная редакция, Изм. N 3).

3.8. Определение массовой доли тяжелых металлов

Определение проводят по ГОСТ 17319-76 тиоацетамидным визуально-колориметрическим или сероводородным методом.

При этом проводят подготовку к анализу: $33,40 \, \text{г} (32,0 \, \text{cm}^3)$ уксусной кислоты квалификации химически чистая и чистая для анализа, отмеренные с точностью до первого десятичного знака, помещают в кварцевую или фарфоровую чашку и выпаривают на водяной бане досуха. К остатку прибавляют $10 \, \text{cm}^3$ дистиллированной воды и далее определение проводят по ГОСТ 17319-76.

Продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для продукта химически чистый ледяной - 0,01 мг $^{\mathrm{Pb}}$, для продукта химически чистый - 0,01 мг $^{\mathrm{Pb}}$,

для продукта чистый для анализа - 0,02 мг $^{
m Pb}$

и те же количества реактивов.

Допускается проводить определение из соответствующего объема раствора, приготовленного по п.3.4 после нейтрализации его раствором аммиака.

При разногласиях в оценке массовой доли тяжелых металлов определение проводят сероводородным методом.

(Измененная редакция, Изм. N 3).

3.9. Определение массовой доли мышьяка

Определение проводят по ГОСТ 10485-75.

При этом подготовку к анализу проводят следующим образом:

 $10,00\ \mathrm{r}\ (9,5\ \mathrm{cm}^3)$ анализируемого продукта, отмеренные с точностью до первого десятичного знака, помещают в колбу прибора для определения содержания мышьяка, прибавляют $30\ \mathrm{cm}^3$ дистиллированной воды, $20\ \mathrm{cm}^3$ раствора кислоты, $1\ \mathrm{cm}^3$ раствора двухлористого олова, перемешивают и далее определение проводят по ГОСТ 10485-75.

Продукт считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска бромнортутной бумажки анализируемого раствора не будет интенсивнее окраски бромно-ртутной бумажки раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для продукта химически чистый ледяной - 0,0015 мг $^{\mathrm{As}}$,

для продукта химически чистый - 0,005 мг $^{\mathrm{As}}$,

для продукта чистый для анализа - 0,005 мг $^{
m As}$

и те же количества реактивов.

(Измененная редакция, Изм. N 2, 3).

3.10. Определение массовой доли веществ, восстанавливающих двухромовокислый калий в пересчете на кислород (O)

3.10.1. Реактивы, растворы и посуда

Вода дистиллированная по ГОСТ 6709-72, перегнанная в присутствии марганцовокислого калия;

калий двухромовокислый по ГОСТ 4220-75, раствор концентрации $c({}^{1}_{6}K_{2}Cr_{2}O_{7}) = 0,1$ моль/дм 3 (0,1 н.), готовят по ГОСТ 25794.2-83;

калий йодистый по ГОСТ 4232-74, раствор с массовой долей 20%;

кислота серная по ГОСТ 4204-77, х.ч.;

крахмал растворимый по ГОСТ 10163-76, раствор с массовой долей 0,5%;

натрий серноватистокислый (тиосульфат натрия) 5-водный по ГОСТ 27068-86 концентрации $c\left(\mathrm{Na_2S_2O_3\cdot 5H_2O}\right)=_{0,1\ \text{моль/дм}}^3$ (0,1 н.), готовят по ГОСТ 25794.2-83;

бюретка 6-2-2 по ГОСТ 29252-91;

колба Кн-1-500-29/32 по ГОСТ 25336-82;

пипетки 6-2-10 и 2-2-1 по ГОСТ 29169-91;

цилиндр 1-250 по ГОСТ 1770-74.

(Измененная редакция, Изм. N 3).

3.10.2. Проведение анализа

 $10,00 \,\mathrm{r} \,(9,5 \,\mathrm{cm}^3)$ анализируемого продукта, отмеренные с точностью до первого десятичного знака, помещают в коническую колбу с притертой пробкой вместимостью $500 \,\mathrm{cm}^3$, прибавляют $10 \,\mathrm{cm}^3$ серной кислоты, раствор охлаждают до $18 \,\mathrm{^{\circ}C}$ - $20 \,\mathrm{^{\circ}C}$, прибавляют $1 \,\mathrm{cm}^3$ раствора двухромовокислого калия и перемешивают.

Одновременно готовят контрольный раствор в тех же условиях, с теми же количествами реактивов и растворов.

Анализируемый и контрольный растворы оставляют на 30 мин. Затем к обоим растворам прибавляют по 50 см дистиллированной воды, перемешивают, охлаждают до 18 °C - 20 °C, прибавляют по 10 см раствора йодистого калия, закрывают пробкой, перемешивают и оставляют в темном месте на 10 мин. Пробку, горло и стенки колбы смывают 150 см дистиллированной воды и выделившийся йод титруют из микробюретки раствором серноватистокислого натрия в присутствии крахмала до обесцвечивания раствора.

(Измененная редакция, Изм. N 3).

3.10.3. Обработка результатов

Массовую долю веществ, восстанавливающих двухромовокислый калий, в пересчете на кислород (X_2), в процентах вычисляют по формуле

$$X_2 = \frac{(V - V_1) \cdot 0,0008 \cdot 100}{m},$$

где " - масса навески продукта, г;

- V объем раствора серноватистокислого натрия концентрации точно 0,1 моль/дм 3 , израсходованный на титрование контрольного раствора, см ;
- V_1 объем раствора серноватистокислого натрия концентрации точно 0,1 моль/дм 3 , израсходованный на титрование анализируемого продукта, с 3 ;
- 0,0008 количество кислорода, соответствующее 1 см ³ раствора двухромовокислого калия концентрации точно 0,1 моль/дм , г.

За результат анализа принимают среднеарифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,001% при доверительной вероятности P =0,95.

(Измененная редакция, Изм. N 3).

3.11. Определение массовой доли веществ, восстанавливающих марганцовокислый калий в пересчете на муравьиную кислоту

3.11.1. Реактивы, растворы и посуда

Вода дистиллированная по ГОСТ 6709-72, перегнанная в присутствии марганцовокислого калия;

калий йодистый по ГОСТ 4232-74;

калий марганцовокислый по ГОСТ 20490-75, раствор концентрации $c(1/5 \mathrm{KMnO_4}) = 0.01$ моль/дм³ (0,01 н.), свежеприготовленный, готовят по ГОСТ 25794.2-83;

кислота серная по ГОСТ 4204-77, раствор с массовой долей 16%;

крахмал растворимый по ГОСТ 10163-76, водный раствор с массовой долей 1%;

натрий серноватистокислый (тиосульфат натрия), 5-водный по ГОСТ 27068-86 раствор концентрации $c\left(\mathrm{Na_2S_2O_3\cdot 5H_2O}\right)=0.01$ моль/дм 3 (0,01 н.) свежеприготовленный, готовят по ГОСТ 25794.2-83;

колба Кн-1-250-29/32 по ГОСТ 25336-82;

пипетки 6-2-10, 2-2-50, 4-2-2 по ГОСТ 29169-91;

цилиндр 1-100 по ГОСТ 1770-74.

(Измененная редакция, Изм. N 3).

3.11.2. Проведение анализа

10 г (9,5 см³) анализируемого продукта, отмеренные с точностью до первого десятичного знака, помещают в коническую колбу с притертой пробкой вместимостью 250 см³, содержащую 70 см³ воды. К раствору добавляют 15 см раствора серной кислоты, 50 см³ раствора марганцовокислого калия и 15 мин нагревают в термостате при 80 °C. Колбу охлаждают 10 мин проточной водой, прибавляют 2 г йодистого калия и оставляют в покое на 5 мин. Выделившийся йод титруют раствором серноватистокислого натрия, добавляют в конце титрования 2 см³ раствора крахмала.

•

Одновременно готовят контрольный раствор в тех же условиях с теми же количествами реактивов и растворов, как в анализируемом растворе.

(Измененная редакция, Изм. N 3). 3.11.3. Обработка результатов

Массовую долю веществ, восстанавливающих марганцовокислый калий в пересчете на муравьиную кислоту (X_3), в процентах, вычисляют по формуле

$$X_3 = \frac{(V_1 - V) \cdot 0,00023 \cdot 100}{m},$$

где ^т - масса навески продукта, г;

 V_1 - объем раствора серноватистокислого натрия концентрации точно 0,01 моль/дм 3 , израсходованный на титрование в контрольном растворе, см 3 ;

V - объем раствора серноватистокислого натрия концентрации точно 0,01 моль/дм 3 , израсходованный на титрование анализируемого продукта, см 3 ;

0,00023 - количество муравьиной кислоты, соответствующее 1 см 3 раствора марганцовокислого калия концентрации точно 0,01 моль/дм 3 , г.

За результат анализа принимают среднеарифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,0005% при доверительной вероятности P=0,95.

(Измененная редакция, Изм. N 3).

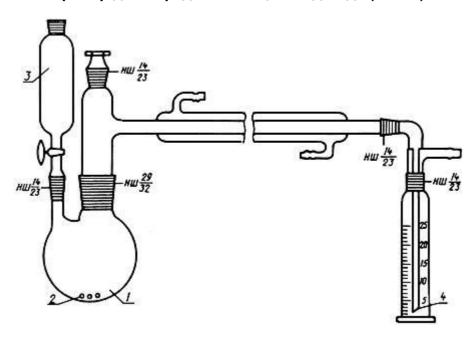
3.12. Определение массовой доли ацетальдегида ($^{ ext{CH}_3 ext{CHO}}$)

Определение проводят по ГОСТ 16457-76 фотометрическим или визуально-колориметрическим методом. При этом собирают прибор для определения ацетальдегида (см. чертеж), состоящий из:

колбы ОГ-2-500-29/32 или КГУ-2-1-500-29/32 по ГОСТ 25336-82;

насадки H 1 29/32-14/23 или изгиба И<750° 2К 29/32-14/23 по ГОСТ 25336-82;

воронки ВК-50 ХС по ГОСТ 25336-82;


холодильника ХПТ 1-100-14/23 по ГОСТ 25336-82;

цилиндра 2-50 по ГОСТ 1770-74;

алонжа АИО-14/23-14/23-60 по ГОСТ 25336-82, удлиненного стеклянной трубкой;

 $20,00~\mathrm{r}$ (19,0 см 3) анализируемого продукта, отмеренных пипеткой вместимостью 25 см 3 (ГОСТ 29169-91) с точностью до первого десятичного знака, помещают в капельную воронку прибора.

Прибор для определения ацетальдегида (схема)

1 - колба перегонная; 2 - капилляры или пемза; 3 - воронка капельная; 4 - приемник

В колбу дистилляционного прибора вместимостью 500 см ³ вносят несколько стеклянных капилляров, заплавленных с одного конца, и приливают около 40 см ³ раствора гидроокиси натрия с массовой долей 30% (<u>ГОСТ</u> 4328-77). Количество миллилитров гидроокиси натрия, необходимого для нейтрализации 20 г продукта, предварительно устанавливают в отдельном опыте соответствующим титрованием в присутствии универсальной индикаторной бумаги до рН 7.

натрия, прибавляя его по каплям до слабо-розовой окраски. Кран капельной воронки закрывают

Колбу с содержимым закрывают пробкой, через которую пропускают конец трубки холодильника с брызгоуловителем и конец капельной воронки. Другой конец трубки холодильника при этом должен быть слегка погружен в воду (5 см³), содержащуюся в цилиндре с метками на 5 и 15 см³. Из капельной воронки сливают продукт в колбу, затем через воронку вводят в колбу прибора 2-3 капли спиртового раствора фенолфталеина с массовой долей 0,1%, приготовленного по ГОСТ 4919.1-77. При необходимости нейтрализуют содержимое колбы продуктом или раствором гидроокиси

и при нагревании отгоняют 10 см³ жидкости в приемник, закрывая его притертой пробкой, перемешивают, доводят объем раствора водой до 23 см³ и далее определение проводят по ГОСТ 16457-76.

Продукт считают соответствующим требованиям настоящего стандарта, если масса ацетальдегида не будет превышать:

для продукта химически чистый ледяной - 0,2 мг,

для продукта химически чистый - 0,4 мг,

для продукта чистый для анализа - 0,6 мг.

(Измененная редакция, Изм. N 2, 3).

3.13. Определение массовой доли уксусного ангидрида

3.13.1. Реактивы, растворы и посуда

Анилин по ГОСТ 5819-78, свежеперегнанный, раствор с массовой долей 0,5% в уксусной кислоте, х.ч. ледяной без ангидрида, годен для применения в течение 15-20 суток при хранении в темной склянке с притертой пробкой;

кристаллический фиолетовый (индикатор), раствор с массовой долей 0,5% в уксусной кислоте, х.ч. ледяной без ангидрида;

кислота уксусная, х.ч. ледяная без ангидрида;

кислота хлорная, уксуснокислый раствор концентрации $c(HClO_4) = 0,1$ моль/дм³ (0,1 н.), готовят по ГОСТ 25794.3-83;

бюретка 7-2-10 по ГОСТ 29252-91;

колба Кн-1-100-14/23 по ГОСТ 25336-82;

пипетки 2-2-25 (или 2-2-50 или 2-2-5), 2-2-10 по ГОСТ 29169-91.

(Измененная редакция, Изм. N 3).

3.13.2. Проведение анализа

25 см продукта помещают в сухую коническую колбу с притертой пробкой вместимостью 100 см , добавляют 10 см раствора анилина, закрывают пробкой, перемешивают и выдерживают 10 мин. Затем добавляют одну каплю раствора кристаллического фиолетового и титруют раствором хлорной кислоты до перехода окраски в зеленую. Одновременно готовят контрольный раствор в тех же условиях, с теми же количествами реактивов и растворов.

Если при обратном титровании изменение окраски анализируемого раствора наступает от нескольких капель раствора хлорной кислоты, что указывает на массовую долю уксусного ангидрида в анализируемом продукте больше 0,03%, то следует в контрольный раствор ввести дополнительное количество анилина и снова дать выдержку 10 мин.

Если в анализируемом продукте массовая доля уксусного ангидрида менее 0,005%, для определения берут 50 см 3 продукта, если массовая доля более 0,05%, берут 5 см 3 или 10 см 3 продукта.

(Измененная редакция, Изм. N 3). 3.13.3. Обработка результатов

Массовую долю уксусного ангидрида (X_4) в процентах вычисляют по формуле

$$X_4 = \frac{(V - V_1) \cdot 0,0102 \cdot 100}{25 \cdot 1.0498},$$

где V - объем уксуснокислого раствора хлорной кислоты концентрации точно 0,1 моль/дм , и 3 расходованный на титрование в контрольном растворе, см 3 ;

 V_1^- - объем уксуснокислого раствора хлорной кислоты концентрации точно 0,1 моль/дм , израсходованный на титрование анализируемого продукта, см 3 ;

0,0102 - количество уксусного ангидрида, соответствующее 1 см 3 уксуснокислого раствора хлорной кислоты концентрации точно 0,1 моль/дм 3 , r;

1,0498 - плотность уксусной кислоты, г/см 3 .

За результат анализа принимают среднеарифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0.002% при доверительной вероятности P = 0.95.

(Измененная редакция, Изм. N 3).

3.14. Проба на разбавление

 3 продукта разбавляют 30 см 3 дистиллированной воды (ГОСТ 6709-72) и перемешивают.

Продукт считают соответствующим требованиям настоящего стандарта, если раствор в течение 1 ч остается прозрачным.

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Упаковка и маркировка - в соответствии с ГОСТ 3885-73.

Вид и тип тары: 3-1, 3-2, 3-5, 3-8, 8-1, 8-2, 8-5, 9-1, 10-1.

Группа фасовки: V, VI, VII.

Для упаковки тары с уксусной кислотой применяют древесную стружку, пропитанную растворами хлористого кальция, хлористого магния или сернокислого аммония, а также шлаковату или другой негорючий уплотняющий материал.

(Измененная редакция, Изм. N 3).

- 4.2. На тару наносят знак опасности по ГОСТ 19433-88 (класс 8, подкласс 8.1, черт.8 основной, черт.3 дополнительный, классификационный шифр 8142, серийный номер ООН 2789).
 - 4.3. Продукт перевозят всеми видами транспорта в соответствии с правилами перевозок огнеопасных грузов.
- 4.4. Продукт хранят в закрытой таре в помещениях, специально приспособленных для хранения огнеопасных веществ, защищенных от действия прямых солнечных лучей и атмосферных осадков.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1. Изготовитель гарантирует соответствие уксусной кислоты требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 5.2. Гарантийный срок хранения продукта один год со дня изготовления.
 - Разд.5. (Измененная редакция, Изм. N 3).

Разд.6. (Исключен, Изм. N 3).

ПРИЛОЖЕНИЕ Обязательное

СООТВЕТСТВИЕ ТРЕБОВАНИЙ ГОСТ 61-75 СТ СЭВ 5375-85

ГОСТ 61-75		CT CЭB 5375-85	
Пункт	Содержание требований	Пункт	Содержание требований
Разд.1		Разд.2	
Табл.1	Отсутствуют нормы для квалификации	Табл.1	Установлены нормы для квалификации
	чистый		чистый
п.2	Массовая доля уксусной кислоты, %, не	п.2	Содержание уксусной кислоты, %, не менее
	менее для квалификаций:		для квалификаций:
	х.ч. ледяная 99,8		х.ч. ледяная 99,8 (99,5)
	х.ч. 99,5		х.ч. 99,5 (99,0)
	ч.д.а. 99,5		ч.д.а. 99 (98)
п.5	Массовая доля сульфатов, %, не более	п.5	Содержание сульфатов, %, не более для
	для квалификации		квалификации
	х.ч. ледяная 0,0001		х.ч. ледяная 0,0002
п.7	Массовая доля железа, %, не более для	п.8	Содержание железа, %, не более для
	квалификаций:		квалификаций:
	х.ч. ледяная 0,00002		х.ч. ледяная 0,00002 (0,00005)
	х.ч. 0,00002		х.ч. 0,00002 (0,00005)
п.8	Массовая доля тяжелых металлов, %, не	п.7	Содержание тяжелых металлов, %, не
	более для квалификаций:		более для квалификаций:
	х.ч. ледяная 0,00003		х.ч. ледяная 0,00005
	х.ч. 0,00005		х.ч. 0,00005 (0,00008)
п.11	Массовая доля веществ,	п.9	Содержание веществ, восстанавливающих
	восстанавливающих марганцовокислый		марганцовокислый калий, %, не более для
	калий, %, не более для квалификации		квалификации
	х.ч. ледяная 0,003		х.ч. ледяная 0,003 (0,005)
Разд.3		Разд.3	
п.3.8	Определение проводится из навески	п.3.9	Определение проводится из раствора,
	продукта. Допускается определение массовой доли тяжелых металлов из		полученного при определении нелетучего остатка
	раствора, полученного при определении		OCIAINA
	массовой доли нелетучего остатка		
Разд.2а	"Требования безопасности"		Отсутствует
Разд.5	"Гарантии изготовителя"		Отсутствует

Уксусную кислоту с нормами, приведенными в скобках, допускается выпускать до 01.01.95.

Электронный текст документа подготовлен ЗАО "Кодекс" и сверен по:

официальное издание М.: Стандартинформ, 2008