ΓΟCT 26252-84

Группа В56

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПОРОШОК НИОБИЕВЫЙ ТЕХНИЧЕСКИЕ УСЛОВИЯ NIOBIUM POWDER. SPECIFICATIONS

ОКП 17 9531

Срок действия с 01.01.86 до 01.01.92*

* Ограничение срока действия снято по протоколу N 3-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС N 5/6, 1993 год). - Примечание изготовителя базы данных.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

А.В.Елютин, Е.Н.Чукальский, В.М.Михайлов, Н.С.Воробьева, В.А.Агапова, З.Х.Ялалтдинова

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 06.08.84 N 2753
 - 3. ВВЕДЕН ВПЕРВЫЕ
 - 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ГОСТ 12.1.044-89	2.3
FOCT 12.4.013-85	2.5
ГОСТ 12.4.034-85	2.5
ГОСТ 83-79	4.2.1, 4.3.1.1, 4.3.2.1
ГОСТ 195-77	4.2.1, 4.3.1.1, 4.3.2.1
ГОСТ 244-76	4.6.1.1, 4.3.2.1
ГОСТ 427-75	4.6.2.2
ГОСТ 2991-85	5.1
ГОСТ 3282-74	5.1

ГОСТ 3560-73	5.1
ГОСТ 3773-72	4.2.1
ΓΟCT 4160-74	4.2.1, 4.3.1.1, 4.3.2.1
ГОСТ 4331-78	4.2.1
ΓΟCT 4467-79	4.2.1, 4.3.2.1
ΓΟCT 4470-79	4.2.1
ΓΟCT 4526-75	4.2.1
ΓΟCT 5044-79	5.1
ΓΟCT 5072-79	4.4.3.2, 4.6.2.2
ΓΟCT 5644-75	4.3.2.1
ΓΟCT 6259-75	4.6.2.2
ГОСТ 6563-75	4.3.1.1
ГОСТ 6613-86	4.6.1.1, 4.5.1
ГОСТ 9428-73	4.3.1.1
ΓΟCT 10354-82	4.1.2, 5.1
ΓΟCT 10691.1-84	4.2.1
ΓΟCT 14192-77	5.2
ΓΟCT 14261-77	4.3.2.1
ΓΟCT 16539-79	4.3.1.1
ΓΟCT 17811-78	5.1
ΓΟCT 18300-87	4.2.1, 4.3.1.1, 4.3.2.1, 4.6.2.2
ΓΟCT 18385.1-79-ΓΟCT 18385.4-79	4.3
ΓΟCT 18573-86	5.1
ΓΟCT 19433-88	5.2
ΓΟCT 19627-74	4.2.1, 4.5.1.1
ΓΟCT 21140-88	5.1
ΓΟCT 21650-76	5.3
ΓΟCT 21907-76	4.2.1

ΓΟCT 22662-77	4.6.1, 4.6.2.1, 4.6.3.2
ΓΟCT 22720.1-77	4.3
ГОСТ 22720.3-77	4.3
ΓΟCT 22720.4-77	4.3
ГОСТ 23463-79	4.2.1, 4.3.1, 4.3.2.1
ГОСТ 23620-79	4.4.2.2, 4.4.2.3, 4.4.2.4
ΓΟCT 24597-81	5.3
ΓΟCT 25664-83	4.3.1.1, 4.3.2.1
ΓΟCT 25750-83	5.1
ΓΟCT 26381-84	5.3
ΓΟCT 27544-87	4.4.3.2, 4.6.2.2

- 5. Срок действия продлен до 01.01.92 Постановлением Госстандарта СССР от 29.06.88 N 2549
- 6. ПЕРЕИЗДАНИЕ (декабрь 1989 г.) с Изменением N 1, утвержденным в июне 1988 г. (ИУС 11-88)

Настоящий стандарт распространяется на ниобиевый порошок, предназначенный для изготовления конденсаторов, легирования сплавов и для других целей.

(Измененная редакция, Изм. N 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Ниобиевый порошок должен изготовляться в соответствии с требованиями настоящего стандарта по технологической документации, утвержденной в установленном порядке.
- 1.2. Ниобиевый порошок подразделяют по химическому составу на марки НбП-а, НбП-б и НбП; по гранулометрическому составу I, II, III и IV классы.

Условное обозначение порошка, коды ОКП приведены в табл.1.

Таблица 1

Класс	Марка	Код ОКП	Область применения
I	НбП-1а	17 9531 0011 03	Изготовление конденсаторов различных типов
	НбП-1б	17 9531 0012 02	
II	НбП-2а	17 9531 0021 01]
	НбП-2б	17 9531 0022 00	
III	НбП-3а	17 9531 0031 10	
	НбП-3б	17 9531 0032 09	
IV	НбП-4	17 9531 0041 08	Легирование сплавов и других целей

1.3. Химический состав ниобиевого порошка должен соответствовать нормам, приведенным в табл.2.

Таблица 2

Марка		Массовая доля примесей, %, не более								
	тантала	титана	кремния	железа	воль-	молиб-	азота	угле-	кисло-	водо-
					фрама	дена		рода	рода	рода
НбП-а	0,06	0,001	0,003	0,003	0,003	0,003	0,02	0,005	0,2	0,002
НбП-б	0,10	0,001	0,003	0,003	0,005	0,005	0,02	0,01	0,2	0,01
НбП	0,12	0,004	0,01	0,01	0,01	0,01	0,02	0,02	0,15	-

Продолжение табл.2

Марка	Массовая доля примесей, %, не более							
	никеля	алюминия	магния	марганца	кобальта	олова	меди	циркония
НбП-а	0,001	0,002	0,001	0,001	0,001	0,001	0,003	0,001
НбП-б	0,001	0,002	0,001	0,001	0,001	0,001	0,003	0,001
НбП	-	-	-	-	-	-	-	-

Примечания:

- 1. Массовая доля примесей никеля, алюминия, магния, марганца, кобальта, олова, меди, циркония обеспечивается технологией.
 - 2. Для порошка III класса массовая доля кислорода должна быть не более 0,3%.
- 1.4. Размер зерен, допускаемые отклонения по крупности и удельная поверхность ниобиевого порошка должны соответствовать нормам, приведенным в табл.3.

Таблица 3

Класс	Размер зерен, мкм	Допускаемые отклонения по	о крупности порошка	Удельная пов	ерхность, см2 /г
	-	мкм	% от массы партии,	на приборе	на приборе Т-3
			не более	АДП-1	
I	40-63	Менее 40	10	200-300	250-350
		Более 63, но не более 100	10		
II	10-63	Менее 10	8	300-550	350-570
		Более 63, но не более 100	8		
III	10-40	Менее 10	8	460-650	570-800
		Более 40, но не более 100	8		
IV	40-1000	Менее 40	10	-	-
		Более 1000	10		

Примечания:

- 1. Массовая доля фракции +100 мкм для порошков всех классов должна быть не более 0,5%.
- 2. По требованию потребителя допускается изготовлять ниобиевый порошок 1-го класса с допускаемыми отклонениями по крупности порошка 8%.
 - 1.2-1.4. (Измененная редакция, Изм. N 1).
 - 1.5. Форма частиц для всех классов порошка осколочная.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Ниобиевый порошок в воздушной среде и сточных водах токсических соединений не образует.
- 2.2. Ниобиевый порошок оказывает на организм человека общетоксическое фиброгенное действие.
- 2.3. Ниобиевый порошок относится к классу трудновоспламеняемых горючих веществ по ГОСТ 12.1.044-89.

Нижний концентрационный предел воспламеняемости аэровзвеси ниобиевого порошка НКПВ равен 308 г/м ³ .

Температура воспламеняемости аэровзвеси - 520 °C.

При отсутствии близко расположенного открытого пламени или других источников тепла, способных нагревать ниобиевый порошок до температуры более 500 °C, ниобиевый порошок пожаробезопасен.

- 2.4. Для тушения ниобиевого порошка используют асбестовое полотно, аргон. Наиболее эффективным средством тушения ниобиевого порошка является хлористый натрий (поваренная соль).
- 2.5. Работы с ниобиевым порошком должны проводиться в спецодежде с использованием индивидуальных средств защиты:

перчатки резиновые;

очки типа ЗП, ЗН по ГОСТ 12.4.013-85*;

* На территории Российской Федерации действует ГОСТ Р 12.4.230.1-2007. - Примечание изготовителя базы данных.

респиратор ШБ-1 марки "Лепесток" по ГОСТ 12.4.034-85*.

3. ПРАВИЛА ПРИЕМКИ

3.1. Ниобиевый порошок принимают партиями. Партия должна состоять из порошка одного класса, однородного по своему химическому составу, сопровождаемого одним документом о качестве, содержащим:

товарный знак или наименование предприятия-изготовителя и товарный знак;

наименование продукции и ее код по ОКП;

номер партии;

количество мест в партии, если их более одного;

массу партии нетто;

^{*} На территории Российской Федерации действует ГОСТ 12.4.034-2001. - Примечание изготовителя базы данных.

результаты проведенных анализов;

дату изготовления;

штамп отдела технического контроля;

обозначение настоящего стандарта.

Масса партии должна быть не менее 100 кг. По согласованию с потребителем допускается масса партии менее 100 кг.

- 3.2. Для контроля соответствия качества порошка требованиям настоящего стандарта изготовитель отбирает выборку массой 3% от массы партии. Контроль массовой доли примесей никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония проводят раз в квартал.
 - 3.1; 3.2. (Измененная редакция, Изм. N 1).
- 3.3. Контроль соответствия качества порошка требованиям настоящего стандарта потребитель проводит на пробе массой 300 г, которая является частью выборки, отобранной изготовителем по п.3.2 и входит в массу партии.
- 3.4. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят повторный анализ на удвоенной выборке, взятой из той же партии.

Результаты повторного анализа являются окончательными и распространяются на всю партию.

(Измененная редакция, Изм. N 1).

4. МЕТОДЫ АНАЛИЗА

4.1. Отбор проб

4.1.1. Точечные пробы отбирают вычерпыванием по квадратной сетке на всю глубину слоя продукта. Точечные пробы объединяют.

Полученную объединенную пробу квартованием сокращают до средней пробы массой не более 1200 г.

Среднюю пробу делят на четыре части: одну часть массой 350 г, вторую - 50 г, третью - 400 г, четвертую - 300 г.

4.1.2. Каждую часть пробы упаковывают в пакет, изготовленный из полиэтиленовой пленки по ГОСТ 10354-82, который вкладывают в стеклянную банку с притертой пробкой или стеклянную или полиэтиленовую банку с завинчивающейся крышкой. Пакеты заваривают или завязывают.

Допускается упаковывать пробу в двойной полиэтиленовый пакет.

На каждую банку наклеивают или между пакетом и стеклянной банкой (или слоями пакета) вкладывают этикетку, содержащую:

обозначение настоящего стандарта;

наименование продукции или ее условное обозначение и код ОКП;

класс порошка;

дату отбора пробы;

номер партии;

штамп отдела технического контроля.

4.1.3. Пробу массой 350 г предназначают для определения гранулометрического состава порошка и замера удельной поверхности.

Пробу массой 50 г предназначают для контроля массовых долей примесей по п.1.3.

Пробу массой 400 г хранят у изготовителя в течение одного года на случай разногласий в оценке качества порошка.

Пробу массой 300 г направляют потребителю для контроля качества порошка и учитывают в массе нетто.

4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

Массовую долю примесей в ниобии (табл.4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона $\left(\lg \frac{I_\pi}{I_\Phi}\right)$ - логарифм концентрации определяемого элемента $\lg C$) .

Таблица 4

Определяемая примесь	Массовая доля примеси, %
Никель	1·1 0 ³ -2·1 0 ²
Алюминий	5·10·4 -1·10·2
Магний	1·10 ⁻³ -2·10 ⁻³
Марганец	5·10·4 -5·10·3
Кобальт	5·10·4 -3·10·2
Олово	1·10·3 -1·10·2
Медь	3·10·3 -5·10·2
Цирконий	1·10·3 -2·10·2

4.2.1. Аппаратура, материалы и реактивы

Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

Выпрямитель 250-300 В, 30-50 А.

Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

Весы аналитические.

Весы торсионные типа ВТ-500.

Ступка и пестик из органического стекла.

Бокс из органического стекла.

Электропечь муфельная с терморегулятором на температуру до 900 °C.

Чашки платиновые.

Станок для заточки графитовых электродов.

Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7-3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7-3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

Порошок графитовый ОС. Ч. 8-4 по ГОСТ 23463-79.

Фотопластинки спектрографические марок СП-ЭС и СП-2, размером 9x12/1,2 или 13x18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

Спирт этиловый ректификованный по ГОСТ 18300-87, дважды перегнанный в кварцевом приборе.

Никеля окись черная по ГОСТ 4331-78, ч.

Алюминия окись безводная для спектрального анализа, х.ч.

Магния окись по ГОСТ 4526-75, ч.д.а.

Марганца (IV) окись по ГОСТ 4470-79, ч.д.а.

Кобальта (II-III) окись по ГОСТ 4467-79, ч. или ч.д.а.

Олова двуокись, ч.д.а.

Циркония двуокись по ГОСТ 21907-76.

Меди (II) окись по ГОСТ 16539-79.

Натрий хлористый ОС. Ч. 6-1.

Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

Проявитель:

метол	2,2 г
натрий сернистокислый безводный по ГОСТ 195-77	96 г
гидрохинон по ГОСТ 19627-74	8,8 г
натрий углекислый по ГОСТ 83-79	48 г

калий бромистый по ГОСТ 4160-74 5 г
вода до 1000 см³.

Фиксаж:
тиосульфат натрия кристаллический по СТ СЭВ 223-75 300 г
аммоний хлористый по ГОСТ 3773-72 20 г
вода до 1000 см³.

4.2.2. Приготовление буферной смеси

Буферную смесь, состоящую из 90% угольного порошка и 10% хлористого натрия готовят, смешивая $0,9000 \, \mathrm{r}$ угольного порошка и $0,1000 \, \mathrm{r}$ хлористого натрия с $20 \, \mathrm{cm}^3$ спирта в течение $30 \, \mathrm{мин}$ и высушивая под инфракрасной лампой.

4.2.3. Приготовление образцов сравнения (ОС)

Основной образец сравнения, содержащий по 1% никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II-III) окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл.5.

Таблица 5

Обозначение образца	Массовая доля каждой из определяемых примесей, %	Масса навески, г	
•		буферной смеси	разбавляемого образца
OC 1	1.10-1	3,3930	0,3770 (основной образец)
OC 2	5·10 ⁻²	1,7700	1,7700 (OC 1)
OC 3	2·10-2	2,3100	1,5400 (OC 2)
OC 4	1.10-2	1,8500	1,8500 (OC 3)
OC 5	5·10 ⁻³	1,7000	1,7000 (OC 4)
OC 6	2·10-3	2,1000	1,4000 (OC 5)
OC 7	1.10-3	1,5000	1,5000 (OC 6)
OC 8	5·10-4	1,0000	1,0000 (OC 7)

Образцы сравнения хранят в полиэтиленовых банках с крышками.

- 4.1.2-4.2.3. (Измененная редакция, Изм. N 1).
- 4.2.4. Проведение анализа
- 4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

Пробу металлического ниобия 1-3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800-900 °C в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки и передают на спектральный анализ.

4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

Спектры в области длин волн 2500-3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/ мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

4.2.4.3. Определение меди

Пробу, приготовленную по п.4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

4.2.4.1-4.2.4.3. (Измененная редакция, Изм. N 1).

4.2.4.4. Обработка результатов

В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента (табл.6) и близлежащего фона $^{\mathcal{S}_{\Phi}}$ и вычисляют разность почернений $^{\Delta\mathcal{S}} = \mathcal{S}_{\pi+\Phi} - \mathcal{S}_{\Phi}$.

 $S_{n+\Phi}$

Таблица 6

Определяемый элемент	Длина волны аналитической линии, нм
Алюминий	309,2
Магний	279,5

Марганец	279,4
Медь	327,4
Олово	284,0
Цирконий	339,2
Никель	300,2
Кобальт	304,4

По трем параллельным значениям $^{\Delta S_1}$, $^{\Delta S_2}$, $^{\Delta S_3}$, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результато $\overline{\mathbb{AS}}$.

От полученных средних значений $\frac{\overline{\Delta S}}{\overline{S}}$ переходят к значениям $\frac{\lg \frac{I_{\pi}}{I_{\Phi}}}{I_{\Phi}}$ с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77*.

Используя значения 1g C и 1g $^{I_{\overline{\Lambda}}}$ для образцов сравнения, строят градуировочный график в координатах 1g $^{I_{\overline{\Lambda}}}$, 1g C . По этому графику по значениям 1g $^{I_{\overline{\Lambda}}}$ для пробы определяют содержание примеси в пробе.

Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью P = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл.7.

Таблица 7

Определяемый элемент	Массовая доля, %	Допускаемое расхождение, %		
		параллельных	результатов	
		определений	анализов	
Алюминий	0,0005	0,0003	0,0002	
	0,005	0,003	0,002	
	0,01	0,006	0,004	
Цирконий	0,001	0,0006	0,0004	
	0,005	0,003	0,002	
	0,01	0,005	0,003	
Магний	0,001	0,0006	0,0004	
	0,005	0,004	0,003	
	0,01	0,006	0,004	
Марганец	0,0005	0,0003	0,0002	

^{*} На территории Российской Федерации действует ГОСТ 13637.1-93, здесь и далее по тексту. - Примечание изготовителя базы данных.

Ī	ī	I	ı
	0,005	0,003	0,002
	0,01	0,006	0,004
Медь	0,005	0,003	0,002
	0,01	0,006	0,003
	0,05	0,02	0,01
	0,003	0,002	0,002
Олово	0,001	0,0006	0,0004
	0,005	0,003	0,002
	0,01	0,005	0,003
Никель	0,001	0,0006	0,0004
	0,005	0,003	0,002
	0,001	0,005	0,003
Кобальт	0,0005	0,0003	0,0002
	0,005	0,003	0,002
	0,01	0,005	0,003

Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

4.2.4.5. Контроль правильности результатов

Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения. С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79-ГОСТ 18385.4-79 или спектральными методами (пп.4.3.1-4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79-ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

- 4.2.4.4.-4.3. (Измененная редакция, Изм. N 1).
- 4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм

отношения интенсивности линии определяемого элемента к интенсивности фона $^{\lg{(I_\pi/I_\Phi)}}$ - логарифм массовой доли определяемого элемента $^{\lg{C}}$.

Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001% составляет 0,15, при массовой доле каждой примеси 0,02% - 0,11.

Суммарная погрешность результата анализа с доверительной вероятностью P = 0,95 при массовой доле примеси 0,00100% не должна превышать ±0,00023% абс, при массовой доле примеси 0,0200% - ±0,0033% абс. 4.3.1.1. Аппаратура, материалы и реактивы

Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

Весы аналитические с погрешностью взвешивания не более 0,0002 г.

Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

Печь муфельная с терморегулятором, на температуру от 400 до 1100 °C.

Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

Станок для заточки графитовых электродов.

Ступки и пестики из оргстекла.

Чашки платиновые по ГОСТ 6563-75.

Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

Порошок графитовый ос.ч. 8-4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям.

Нижние электроды, выточенные из графитовых стержней ос.ч. 7-3 диаметром 6 мм, имеющие размеры, мм:

высота заточенной части	10
диаметр заточенной части	4,0
глубина кратера	3,8
диаметр кратера	2,5

Верхние электроды из графитовых стержней ос.ч. 7-3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

Натрий фтористый, ос.ч. 7-3.

Ниобия пятиокись для оптического стекловарения, ос.ч. 7-3.

Титана (IV) двуокись, ос.ч. 7-3.

Кремния (IV) двуокись по ГОСТ 9428-73, ч.д.а.

Железа (III) окись, ос.ч. 2-4.

Никеля (II) закись, ч.д.а.

Алюминия (III) окись, х.ч.

Магния (II), ч.д.а.

Марганца (IV) окись, ос.ч. 9-2.

Олова (IV) окись, ч.д.а.

Меди (II) окись (гранулированная) по ГОСТ 16539-79.

Циркония (IV) двуокись, ос.ч. 6-2.

Спирт этиловый ректификованный по ГОСТ 18300-87.

Лак идитоловый, 1%-ный спиртовый раствор.

Метол по ГОСТ 25664-83.

Гидрохинон по ГОСТ 19627-74.

Натрий сернистокислый (сульфит) по ГОСТ 195-77.

Натрий углекислый по ГОСТ 83-79.

Калий бромистый по ГОСТ 4160-74.

Натрия тиосульфат кристаллический по ГОСТ 244-76.

Калий сернистокислый пиро (метабисульфит).

Вода дистиллированная по ГОСТ 6709-72.

Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до

1000 см 3 , перемешивают и фильтруют.

Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750-800 см 3 воды, доводят объем раствора водой до 1000 см 3 , перемешивают и фильтруют.

Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1% в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл.7, охлаждают в эксикаторе и берут навески, указанные в табл.7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси

в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400±20) °С в течение 60 мин и охлаждают в эксикаторе.

Промежуточная смесь и рабочие образцы сравнения (POC1-POC4); готовят, смешивая указанные в табл.76 массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения POC2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950±20) °C, а ОС, ПС и POC2 - при температуре (400±20) °C в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400±20) °C в течение 60 мин и охлаждают в эксикаторе.

Буферная смесь 95% графитового порошка и 5% фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

4.3.1.2. Проведение анализа

Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800-850 °C в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

Каждый из рабочих образцов сравнения POC1-POC4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1-РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80-90 °C в течение (15±1) мин.

В кассету спектрографа помещают:

в коротковолновую область спектра - диапозитивную фотопластинку;

в длинноволновую - фотопластинку марки СП-2.

Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

.

сила тока	10±0,5 A
межэлектродный промежуток	2 мм
экспозиция	(40±3) c
щель спектрографа	(0,020±0,001) мм
промежуточная диафрагма	(5,0±0,1) мм
деление шкалы длин волн	(303,0±2,5) нм

Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

4.3.1.3. Обработка результатов

В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента (табл.7в) и близлежащего фона $^{\mathcal{S}_{\Phi}}$ и вычисляют разность почернений $^{\Delta\mathcal{S}} = \mathcal{S}_{\pi+\Phi} - \mathcal{S}_{\Phi}$.

 $\mathcal{S}_{\pi+\!\varphi}$

По трем значениям $^{\Delta S_1}$, $^{\Delta S_2}$, $^{\Delta S_3}$, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое $^{\Delta S}$. От полученных значений $^{\Delta S}$ переходят к значениям $^{\lg (I_{\pi}/I_{\Phi})}$ с помощью таблиц, приведенных в ГОСТ 13637.1-77.

Таблица 7а

Наименование	Формула	Температура	Macca	Коэффициент	Macca	Массовая
препарата		прокаливания	навески	пересчета	металла	доля
		перед	прокаленного	массы	в навеске	металла
		взвешиванием,	препарата	металла на	оксида, г	в смеси
		°C (пред. откл.	оксида, г	массу оксида		металлов,
		±20 °C)				%
Пятиокись ниобия	Nb ₂ O ₅	950	10,2996	1,4305	7,2000	90
Двуокись титана	TiO ₂	1100	0,1334	1,6680	0,0800	1
Двуокись кремния	SiO ₂	1100	0,1711	2,1393	0,0800	1
Окись железа	Fe ₂ O ₃	800	0,1144	1,4297	0,0800	1
Закись никеля	NiO	600	0,1018	1,2725	0,0800	1
Окись алюминия	A½ O3	1100	0,1512	1,8895	0,0800	1
Окись магния	MgO	1100	0,1327	1,6583	0,0800	1
Окись марганца	MnO_2	400	0,1266	1,5825	0,0800	1
Окись олова	SnO_2	600	0,1016	1,2696	0,0800	1
Окись меди	CuO	700	0,1001	1,2518	0,0800	1
Двуокись циркония	ZrO ₂	1100	0,1081	1,3508	0,0800	1
			11,5406		8,0000	100

Используя значения $\lg C$ (где C - массовая доля определяемой примеси по табл.7б) и полученные по первой фотопластинке значения $\lg (I_{\pi}/I_{\Phi})$ для рабочих образцов сравнения POC1-POC4, строят градуировочный график в координатах $\lg C$, $\lg (I_{\pi}/I_{\Phi})$. По этому графику, используя полученное по той же фотопластинке значение $\lg (I_{\pi}/I_{\Phi})$ для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

Таблица 7б

		Масса			
Обозначение образца	Массовая доля каждой примеси в расчете на содержание металла в смеси	римеси в расчете препарата на содержание пятиокиси		Суммарная масса смеси оксидов, содержащая 8 г металла, г	
	металлов, %		обозначение)		
Промежуточная смесь	0,100	10,2996	1,1541 (OC)	11,4537	
POC1	0,020	9,1552	2,2907 (ПС)	11,4459	

POC2	0,009	10,4140	1,0308 (ПС)	11,4443
POC4	0,001	10,1726	1,2716 (POC2)	11,4442
POC3	0,003	11,1007	0,3436 (ПС)	11,4443

Таблица 7в

Определяемый элемент	Аналитическая линия, нм
Магний	285,21
Кремний	288,16
Марганец	294,92
Никель	300,25
Железо	302,06
Титан	307,86
Алюминий	308,22
Цирконий	316,60
Олово	317,50
Медь	327,47

Результат второго параллельного определения получают таким же образом по второй пластинке.

Разность большего и меньшего результатов параллельных определений с доверительной вероятностью P = 0.95 не должна превышать допускаемого расхождения, указанного в табл.7г.

Таблица 7г

Массовая доля примеси, % Абсолютное допускаемое расхождение двух результ параллельных определений, %	
0,0010	0,0004
0,020	0,006

Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

4.3.1.4. Контроль правильности результатов - по п.4.2.4.5.

4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01%

Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам.

Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005-0,010%.

4.3.2.1. Аппаратура, материалы и реактивы

Спектрограф ДФС-13 - с решеткой 600 штр/мм или аналогичный.

Источник постоянного тока ВАС-275-100 или аналогичный.

Микрофотометр МФ-2 или аналогичный.

Спектропроектор ДСП-2 или аналогичный.

Шкаф сушильный типа СНОД 3.5.3.5.3.5/3 М или аналогичный.

Весы аналитические с погрешностью взвешивания не более 0,0002 г.

Весы торсионные ВТ-500 или аналогичные.

Печь муфельная с терморегулятором на температуру от 400 до 1000 °C.

Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

Станок для заточки графитовых электродов.

Ступки и пестики из оргстекла.

Чашки платиновые по ГОСТ 6563-75.

Эксикаторы.

Фотопластинки формата 9x12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

Нижние электроды типа "рюмка", выточенные из графитовых стержней ос.ч. 7-3 диаметром 6 мм, имеющие размеры, мм:

высота "рюмки"	5
глубина кратера	3
диаметр кратера	4
диаметр шейки	3,5
высота шейки	3,5

Верхние электроды - стержни диаметром 6 мм из графита ос.ч. 7-3, заточенные на цилиндр диаметром 4 мм.

Кислота соляная по ГОСТ 14261-77, ос.ч.

Ниобия пятиокись, ос.ч. 7-3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

Вольфрама (VI) окись, ч.д.а.

Молибдена (IV) окись, ч.д.а.

Кобальта (II, III) окись по ГОСТ 4467-79.

Сурьмы (III) окись, х.ч.

Свинец хлористый.

Калий сернокислый, ос.ч. 6-4.

Спирт этиловый ректификованный по ГОСТ 18300-87.

Метол по ГОСТ 25664-83.

Гидрохинон по ГОСТ 5644-75.

Натрий сернистокислый (сульфит) по ГОСТ 195-77.

Калий бромистый по ГОСТ 4160-74, ч.д.а.

Натрий углекислый по ГОСТ 83-79, ч.д.а.

Натрия тиосульфат кристаллический по ГОСТ 244-76.

Калий сернистокислый пиро (метабисульфит).

Вода дистиллированная по ГОСТ 6709-72.

Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см³, воронки.

Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см³. перемешивают и фильтруют.

Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750-800 см 3 воды, доводят объем раствора водой до 1000 см 3 , перемешивают и фильтруют.

Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40-50 мин, вручную - 90-120 мин.

Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1% в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл.7д, охлаждают в эксикаторе и берут навески, указанные в табл.7д. Переносят в ступку

сначала приблизительно ¹/₄ часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400±20) °C в течение 60 мин и охлаждают в эксикаторе.

Промежуточную смесь и рабочие образцы сравнения (POC1-POC4) готовят, смешивая указанные в табл.7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения POC1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950±20) °C, а ОС, ПС и POC1 - при температуре (400±20) °C в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при

температуре (400±20) °C в течение 60 мин и охлаждают в эксикаторе. Спирт добавляют из расчета 1 см³ на 1 ОС. 4.3.2.2. *Проведение анализа*

Навеску порошка ниобия массой 0,5-0,6 г помещают в стакан вместимостью 100 см 3 , заливают разбавленной 1:1 соляной кислотой (30 см 3) и держат на электроплитке до закипания. После этого кислоту сливают, порошок промывают дистиллированной водой, 3 см 3 спирта, просушивают и прокаливают в муфельной печи при температуре 800 °C до полного окисления. Охлаждают, переносят в ступку, смешивают с буферной смесью в соотношении 3:1 (по массе) и помещают в пакет из кальки.

Полученную смесь помещают в шесть нижних электродов (без взвешивания), заполняя кратер полностью и удаляя смесь с торцов электродов неоднократным погружением электрода в пакет со смесью.

Каждый из рабочих образцов сравнения POC1-POC4 также смешивают с буферной смесью в соотношении 3:1 (по массе) и помещают в шесть нижних электродов, заполняя кратер полностью и удаляя смесь с торцов электродов.

Фотографирование спектров производят в следующих условиях:

ток дуги	постоянный
нижний электрод	анод
сила тока	11-13 A
экспозиция	20 c
щель спектрографа	15 мкм
межэлектродный промежуток	2 мм
промежуточная диафрагма	5 мм
деление шкалы	360 нм

На одну фотопластинку фотографируют по три спектра проб и по три спектра каждого из рабочих образцов сравнения. Получают две таких фотопластинки. Экспонированные фотопластинки проявляют, промывают водой, фиксируют, промывают водой и сушат.

4.3.2.3. Обработка результатов

В каждом из трех спектров образца (пробы или образца сравнения), снятых на одну фотопластинку, фотометрированием находят почернения $^{\Sigma_{\pi}}$ аналитической линии определяемого элемента (см. табл.7ж), почернения $^{\Sigma_{\phi}}$ линии сравнения сурьмы Sb 323,25 нм и почернения $^{\Sigma_{\phi}}$ фона вблизи аналитической линии вольфрама W 400,87 нм.

Таблица 7д

	-					
Наименование препарата	Формула	Температура	Macca	Коэффициент	Macca	Массовая
		прокаливания	навески	пересчета	металла	доля

		перед взвешиванием, °C	прокаленного препарата оксида, г	массы металла на массу оксида	в навеске оксида, г	металла в смеси металлов, %
Пятиокись ниобия	Nb ₂ O ₅	900-1000	13,8759	1,4305	9,7000	97
Трехокись вольфрама	WO ₃	650	0,1261	1,2611	0,1000	1
Трехокись молибдена	MoO ₃	450-500	0,1500	1,5003	0,1000	1
Окись кобальта	Co ₂ O ₃	800	0,1407	1,4072	0,1000	1
			14,2927		10,0000	100

При определении вольфрама для каждого из трех спектров (пробы или образца сравнения) находят значение $\Delta S = S_{\pi} - S_{\Phi}$ и вычисляют среднее арифметическое трех значений ΔS - значение $\Delta \overline{S} = \frac{1}{3}(\Delta S_1 + \Delta S_2 + \Delta S_3)$. По полученным средним значениям ΔS находят значения $\frac{\lg(I_{\pi}/I_{\Phi})}{I_{\Phi}}$, пользуясь таблицами по ГОСТ 13637-77. Используя значения $\frac{\lg C}{I_{\pi}/I_{\Phi}}$ (где C - массовая доля вольфрама по табл.7e) и полученные по первой фотопластинке значения $\frac{\lg(I_{\pi}/I_{\Phi})}{I_{\Phi}}$ для рабочих образцов сравнения РОС1-РОС4, строят градуировочный график в координатах $\frac{\lg C}{I_{\pi}/I_{\Phi}}$, $\frac{\lg(I_{\pi}/I_{\Phi})}{I_{\Phi}}$. По этому графику, используя полученные по той же фотопластинке значения $\frac{\lg(I_{\pi}/I_{\Phi})}{I_{\Phi}}$ для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение $\Delta S = S_{\pi} - S_{c}$ и вычисляют среднее арифметическое трех значений - значение $\Delta \overline{S} = \frac{1}{3}(\Delta S_{1} + \Delta S_{2} + \Delta S_{3})$. По полученным средним значениям ΔS для образцов сравнения строят градуировочный график в координатах $A = \frac{1}{3}(\Delta S_{1} + \Delta S_{2} + \Delta S_{3})$, где $A = \frac{1}{3}(\Delta S_{1} + \Delta S_{2} + \Delta S_{3})$ по полученные по той же фотопластинке значения $A = \frac{1}{3}(\Delta S_{1} + \Delta S_{2} + \Delta S_{3})$ для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

Таблица 7е

		Масса навески, г		
Обозначение	Массовая доля каждой	прокаленного	разбавляемого	Суммарная
образца	из определяемых примесей,	препарата	образца (в скобках	масса смеси
	в расчете на содержание	пятиокиси ниобия	приведено его	оксидов,
	металла в смеси металлов,		обозначение)	содержащая 10
	%			г металлов, г
ПС	0,100	12,8745	1,4293 (ΠC)	14,3038
POC1	0,010	12,8745	1,4304 (∏C)	14,3049
POC2	0,004	13,7328	0,5722 (ΠC)	14,3050
POC3	0,002	14,0189	0,2861 (ΠC)	14,3050
POC4	0,001	12,8745	1,4305 (POC1)	14,3050

Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью P = 0,95 не должна превышать допускаемого расхождения, приведенного в табл.7ж и табл.7з.

Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

Таблица 7ж

Массовая доля примеси, %	Абсолютное допускаемое расхождение двух результатов		
	параллельных определений, %		
0,0010	0,0005		
0,0050	0,0014		
0,0100	0,0028		

Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

- 4.3.2.4. Контроль правильности результатов по п.4.2.4.5.
- 4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10%)

Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

4.3.3.1. Аппаратура, материалы и реактивы

Весы аналитические.

Таблица 7з

Определяемый элемент	Аналитическая линия, нм	Интервал определяемых значений массовой		
		доли, %		
Вольфрам	400,87	От 0,001 до 0,01		
Молибден	319,40	" 0,001 " 0,004		
Кобальт	320,88 340,51	" 0,001 " 0,01 " 0,001 " 0,004		
	345,35	" 0,001 " 0,01		

Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74*.

^{*} На территории Российской Федерации действуют ГОСТ 29169-91, ГОСТ 29227-91-ГОСТ 29229-91, ГОСТ 29251-91-ГОСТ 29253-91, здесь и далее по тексту. - Примечание изготовителя базы данных.

Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-74.

Стакан В-1-100 ТС по ГОСТ 25336-82.

Стакан фторопластовый с носиком вместимостью 100 см

Банка БН-0,5, по ГОСТ 17000-71.

Бидон БДЦ-5,0 по ГОСТ 17000-71.

Пробки из пластмассы по ГОСТ 1770-74.

Цилиндры из полиэтилена вместимостью 60 см.

Пробирки центрифужные из полиэтилена вместимостью 10 см 3

Пипетки из полиэтилена вместимостью 10 см.

Кислота серная по ГОСТ 4204-77, х.ч. раствор 5 моль/дм 3 и 1,4 моль/дм 3 .

Кислота азотная по ГОСТ 4461-77, х.ч.

Кислота фтористоводородная по ГОСТ 10484-78, х.ч., раствор 7,5 моль/дм 3

Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм 3 и фтористоводородной кислоты 0,98 моль/дм 3 . Для приготовления 3 5 дм раствора в полиэтиленовый бидон помещают 245 см 3 раствора фтористоводородной кислоты 20 моль/дм 3 , 1175 см 3 раствора серной кислоты 5 моль/дм 3 , 3580 см 3 дистиллированной воды и перемешивают в течение 30-40 с.

Бриллиантовый зеленый, ч., раствор 3 г/дм³, готовят растворением 3 г красителя в 1 дм³ воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

Толуол по ГОСТ 5789-78, ч.д.а.

Ацетон по ГОСТ 2603-79, ч.д.а.

Аммоний сернокислый по ГОСТ 3769-78, х.ч.

Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5%.

Вода дистиллированная по ГО

CT 6709-72.

4.3.3.2. Подготовка к измерению

4.3.3.2.1. Приготовление основного раствора и рабочих растворов

Основной раствор пятиокиси тантала $0,200 \, \text{г/дм}^3$: навеску металлического порошка тантала $0,0819 \, \text{г}$, взвешенную с погрешностью $\pm 0,0005 \, \text{г}$, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой $5,0 \, \text{см}^3$ концентрированной фтористоводородной кислоты, $0,5 \, \text{см}^3$ азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема $1-2 \, \text{см}^3$. Раствор переводят в мерную колбу вместимостью $500 \, \text{см}^3$, в которую предварительно помещают $250 \, \text{сM}$ дистиллированной воды, доводят до метки и перемешивают в течение $30-40 \, \text{с}$. Приготовленный раствор хранят в полиэтиленовой посуде.

Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см³ отбирают пипеткой 2,0 и 20,0 см³ основного раствора в мерные колбы вместимостью 200 см³, добавляют 56,0 см³ раствора серной кислоты 5 моль/дм³, доводят водой до метки и перемешивают в течение 30-

40 c.

4.3.3.2.2. Построение градуировочного графика

В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см 3 рабочего раствора 2,0 мкг/см 3 и 1,0; 2,0; 3,0; 4,0; 5,0 см рабочего раствора 20,0 мкг/см 3 . Доводят раствором серной кислоты концентрации 1,4 моль/дм (2,8 н) до 10,0 см 3 добавляют полиэт 3 леновой пипеткой 1,5 см 3 раствора фтористоводородной кислоты 7,5 моль/дм , 25,0 см 3 толуола, добавляют из бюретки 11,0 см 3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60-90 с 10 см 3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин $^{-1}$.

Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20-100 мкг пятиокиси тантала и 30,0 мм в интервале 4-20 мкг пятиокиси тантала при $\lambda_{\text{max}} = (590\pm10)$ нм. В качестве раствора сравнения применяют толуол.

Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных г

рафика.

4.3.3.3. Проведение измерений

Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см 3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см 3 азотной кислоты и 8,0 см 3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2-3 мин. Стаканы охлаждают до температуры (25±5) $^{\circ}$ С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см 3 и переводят в мерную колбу вместимостью 100 см 3 , доводят водой до метки и перемешивают 30-40 с.

Аликвотную часть полученного раствора, содержащую 4-100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см ³, доводят раствором серной кислоты концентрации 5 моль/дм ³ до 10,0 см ³, добавляют 1,5 см ³ раствора фтористоводородной кислоты концентрации 7,5 моль/дм ³ и оставляют на 8-10 мин. Далее добавляют пипеткой 25,0 см ³ толуола, 11,0 см ³ раствора бриллиантового зеленого и производят экстракцию, как описано в п.4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20-25 см ³ отмывают. Добавляют 10,5 см ³ раствора для отмывки (полиэтиленовой пипеткой), 10,0 см ³ раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п.4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см ³ вновь подвергают операции отмывки. После расслаивания фаз 10 см ³ экстракта помещают в центрифужную пробирку

и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

Оптическую плотность экстракта измеряют на КФК-2, как описано в п.4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочно

му графику.

4.3.3.4. Обработка результатов

Массовую долю тантала (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot V}{m_1 \cdot 1,221 \cdot a \cdot 1000000} \cdot 100,$$

где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

- масса навески пробы, г;

 α - аликвотная часть раствора, отбираемая для экстракции, см 3 ;

 ${\it V}$ - объем мерной колбы, равный 100 см 3 ;

1,221 - коэффициент пересчета.

За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл.7и.

Таблица 7и

Массовая доля тантала, %	Допускаемые расхождения, %	
0,02	0,01	
0,05	0,01	
0,10	0,02	

4.3.3.5. Контроль правильности анализа

Контроль правильности анализа проводят методом добавок.

Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

Суммарное содержание тантала (X_1) в пробе с добавкой в процентах вычисляют по формуле

$$X_1 = X_{\text{aH}} + \frac{m_1}{m_2} \cdot 10^{-4}$$
,

где $X_{\mathtt{att}}$ - массовая доля тантала в пробе, %;

- масса тантала, введенная с добавкой, мкг;

 m_2 - масса навески пробы, г.

Анализ считают правильным (P = 0,95), если разность большей и меньшей из двух величин X_1 и результата анализа пробы с добавкой не превышает

$$\Delta = 0.7\sqrt{d_1^2 + d_2^2}$$

где d_1 - допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

 d_2 - допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой. 4.3.1-4.3.3.5. (Введены дополнительно, Изм. N 1).

4.4. Определение удельной поверхности

- 4.4.1. Удельная поверхность ниобиевого порошка определяется на приборе АДП-1 или Т-3 методом воздухопроницаемости, при котором замеряется продолжительность просасывания определенного объема воздуха через слой порошкообразного материала, зависящая при прочих равных условиях от величины удельной поверхности.
 - 4.4.2. Определение удельной поверхности на приборе АДП-1
 - 4.4.2.1. Определение массы пробы

Массу пробы (m), г, определяют по формуле m = knp, где k = 3,33, n = 2.

 $^{p}\,$ - плотность ниобиевого порошка, равная 8,57 г/см $^{3}\,$.

Тогда m = 57 г. Навеску взвешивают с погрешностью не более 0,01 г.

Удельную поверхность определяют по формуле

$$\rho = K\sqrt{n} \, \frac{M\sqrt{T}}{m} \,,$$

где K - константа прибора,

M - величина, зависящая от температуры воздуха и высоты слоев навески $^{k_{\! 1}}$, находится из таблицы инструкции к прибору.

$$k_1 = \frac{h}{n}$$
*, где k - высота слоя навески, $n = 2$.

данных. T° - время измерения давления в заданных пределах шкалы

манометра, с. (Измененная редакция, Изм. N 1)

- 4.4.2.2. Аппаратура по ГОСТ 23620-79.
- 4.4.2.3. Проведение анализа по ГОСТ 23620-79.
- 4.4.2.4. Обработка результатов по ГОСТ 23620-79, с дополнением.

^{*} Формула соответствует оригиналу. - Примечание изготовителя базы

Допускаемое расхождение результатов анализа при определении удельной поверхности менее 500 см² /г составляет 7% отн.

(Измененная редакция, Изм. N 1).

4.4.3. Определение удельной поверхности на приборе Т-3

4.4.3.1. Определение массы пробы

Массу пробы определяют исходя из размеров калиброванной гильзы прибора.

4.4.3.2. Аппаратура

Прибор Т-3.

Секундомер по ГОСТ 5072-79.

Термометр по ГОСТ 27544-87.

4.4.3.3. Проведение анализа

Массу пробы ниобиевого порошка, просушенного при 100 °C в течение 30 мин, взвешивают с погрешностью не более 0,01 г, помещают в гильзу прибора, на дно которой помещают перфорированный диск, сверху которого кружок фильтровальной бумаги.

Фиксируют температуру окружающего воздуха.

Легким постукиванием в течение 30-60 с порошок разравнивают, уплотняют и сверху покрывают кружком фильтровальной бумаги.

Порошок уплотняют плунжером до тех пор, пока упорное кольцо плунжера не придет в соприкосновение с верхним краем гильзы.

Гильзу присоединяют к манометру-аспиратору и включают водоструйный насос или другой источник разряжения.

Открывают кран. Жидкость в закрытом колене манометра-аспиратора должна подняться до высоты верхней отметки, нанесенной на трубке.

После этого просасывают воздух через слой порошка (закрыв кран), находящегося в гильзе.

4.4.3.4. Обработка результатов

Удельную поверхность порошка ниобия (S) , см 2 /г, вычисляют по формуле

$$S = \frac{K}{\gamma} \cdot \sqrt{\frac{m^3}{(1-m)^2}} \cdot \sqrt{\frac{1}{\eta}} \cdot \sqrt{T},$$

где K - константа прибора, указанная в паспорте прибора или определяемая по порошку с известной удельной поверхностью, прилагаемому к прибору;

- $^{\gamma}$ плотность ниобиевого порошка, г/см 3
- тористость порошка, в долях единицы;
- т время снижения жидкости от отметки над верхним расширением до отметки между двумя расширениями, с;
- $^{\eta \eta}$ вязкость воздуха при температуре опыта, П.

Для постоянного контроля ниобиевого порошка удельную поверхность вычисляют по формуле

$$S = A \cdot \sqrt{T}$$

где

$$A = \frac{K}{\gamma} \cdot \sqrt{\frac{m^3}{(1-m)^2}} \cdot \sqrt{\frac{1}{\eta}}.$$

4.5. Гранулометрический состав порошков первого и четвертого классов и плюсовых фракций второго и третьего классов определяют ситовым методом по ГОСТ 18318-73*.

Набор сит по ГОСТ 6613-86 с размером ячеек 1,0; 0,20; 0,14; 0,10; 0,071; 0,063; 0,040 мм.

Анализатор ситовой вибрационный типа 236Б-Гр или аналогичного типа.

4.5.2. Проведение анализа

В зависимости от класса порошка подбирают комплект сит с расположением их по убывающим размерам ячеек (самый крупный вверху).

100 г ниобиевого порошка, взвешенного с погрешностью не более 0,1 г, помещают на верхнее сито. Комплект сит с пробой устанавливают на ситовой анализатор и включают реле времени.

Рассев порошка проводят в течение 20-30 мин.

4.5.3. Обработка результатов

Массовую долю остатка порошка ниобия на сите (X) , %, вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100,$$

где m_1 - масса остатка на сите, г;

масса навески ниобиевого порошка, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать указанных в табл.7к.

Таблица 7к

Массовая доля остатка на сите, %	Абсолютные допускаемые расхождения, %, абс	
От 0,1 до 0,2	0,2	
Св. 0,2 " 0,5	0,3	
" 0,5 " 1	0,4	
" 1 " 2	0,7	
" 2 " 5	1,0	
" 5 " 10	2,0	

^{*} На территории Российской Федерации действует ГОСТ 18318-94. - Примечание изготовителя базы данных. 4.5.1. *Аппаратура*

- 4.5.2; 4.5.3. (Измененная редакция, Изм. N 1).
- 4.6. Гранулометрический состав порошков второго и третьего классов минусовых фракций определяют методом фотоседиментации.
 - 4.6.1. Отбор и подготовка проб по ГОСТ 22662-77.
 - 4.6.1.1. Для удаления крупных частиц высушенную пробу просеивают через сито N 0063 с сеткой по ГОСТ 6613-86.
- 4.6.1.2. Пробу для анализа берут в количестве, необходимом для приготовления суспензии с концентрацией порошка 0,3-0,45%, что соответствует положению стрелки потенциометра в области от 0 до 5 мВ.

Для порошков второго и третьего классов масса пробы должна составлять соответственно - 2,3 г и 1,6 г (в зависимости от количества мелкой фракции).

Пробу взвешивают с погрешностью не более 0,01 г.

- 4.6.2. Фотоседиментационный метод
- 4.6.2.1. Сущность метода по ГОСТ 22662-77.
- 4.6.2.2. Аппаратура и реактивы

Фотоседиментометров типов АФС-2, АФС-3, ФСМ-70 или аналогичный прибор.

Весы.

Водоструйный или вакуумный насос.

Термометр по ГОСТ 27544-87.

Секундомер по ГОСТ 5072-72.

Микроскоп металлографический типа ММУ-3 или аналогичный с увеличением × 400.

Набор ареометров.

Линейка металлическая по ГОСТ 427-75.

Глицерин по ГОСТ 6259-75, ч.д.а. или ч.

Гексаметафосфат натрия.

Спирт этиловый ректификованный по ГОСТ 18300-87.

Дисперсионная жидкость, 30-50%-ный раствор глицерина в воде.

Объем дисперсионной жидкости - 500 см .

(Измененная редакция, Изм. N 1).

4.6.3. Подготовка к анализу

4.6.3.1. Подбор дисперсионной жидкости

По уравнению Стокса определяют время оседания самых крупных частиц порошка, обнаруженных микроскопическим анализом, $\overset{(t)}{}$, c, по формуле

$$t = \frac{18\eta h}{g\left(\gamma_{\text{\tiny T}} - \gamma_{\text{\tiny K}}\right) \cdot d^2},$$

где $^{\eta}$ - вязкость жидкости, П;

h - высота оседания, см (h = 32 см);

g - ускорение свободного падения, см/с 2 ;

 γ_{T} - пикнометрическая плотность порошка, г/см 3 ;

 γ_{x} - плотность жидкости, г/см³;

d - диаметр частиц, см.

Это время должно быть не менее 40 с. При времени менее 40 с подбирают более вязкую дисперсионную жидкость. Рассчитанное время оседания крупных частиц (d_{max}) умножают на коэффициент 1,11; полученное число набирают

бора.

на панели при

- 4.6.3.2. Плотность дисперсионной жидкости определяют по ГОСТ 22662-77 или ареометром.
- 4.6.3.3. Значение вязкости дисперсионной жидкости должно быть выражено с точностью 0,001 П.
- 4.6.3.4. Высота оседания определяется как расстояние от верхнего края суспензии до плоскости измерения (h = 32 см).
 - 4.6.4. Проведение анализа
 - 4.6.4.1. Приготовление суспензии порошка

Пробу помещают в фарфоровую чашечку, добавляют гексаметафосфат натрия - 0,05 г, 3-5 см 3 дисперсионной жидкости (допускается вместо гексаметафосфата натрия добавлять 3-5 см 3 этилового спирта).

Пробу порошка растирают не менее 2 мин, не допуская измельчения отдельных частиц порошка, затем разбавляют дисперсионной жидкостью и переносят в кювету.

Доводят объем суспензии до метки, соответствующей высоте h = 32 см, кювету устанавливают в гнездо прибора и перемешивают суспензию в течение 2-3 мин, не допуская образования пузырьков.

По окончании перемешивания порошок должен быть равномерно распределен по высоте кюветы.

4.6.4.2. Прибор включается нажатием кнопки "ABT" и начинается регистрация процесса оседания частиц, снимается фотоседиментограмма. В начальный момент регистрации стрелка потенциометра должна находиться в пределах 0-5 мВ шкалы прибора.

Если при установлении кюветы в гнездо прибора стрелка прибора показывает более 5 мВ, в дисперсионную жидкость добавляют небольшое количество порошка (0,1-0,2 г), подготовленного по п.4.6.4.1.

При отклонении стрелки влево от нулевого показания необходимо взять пробу немного меньше первоначальной (масса пробы подбирается экспериментально).

4.6.4.3. Окончание процесса фотометрирования фиксируется загоранием зеленой лампочки. После этого каретку с фотометрическим устройством возвращают в исходное положение и снимают вторую фотоседиментограмму.

Фотоседиментограмма состоит из девяти ступенек. Каждая ступенька соответствует суммарной площади проекции частиц данной фракции на плоскость, перпендикулярную лучу света.

4.6.5. Обработка результатов

4.6.5.1. Расчет фотоседиментограмм

Расчет фотоседиментограмм проводят в соответствии с паспортом прибора.

За результат анализа принимают среднее арифметическое двух параллельных определений.

Допускаемые расхождения двух параллельных определений зависят от фракции порошка (табл.8) при доверительной вероятностиP = 0.95.

Таблица 8

	Размер частиц фракции, мкм	Абсолютное допускаемое расхождение, %		
по фотоседиментограмме				
		II класса	III класса	
1	Не более 63	4	-	
2	40-63	4	4	
3	30-40	3	3	
4	20-30	2	3	
5	10-20	2	2	
6	10-20	2	2	
7	10	2	2	
8	10	2	2	
9	10	2		

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Ниобиевый порошок I-III классов упаковывают в полиэтиленовые банки с навинчивающимися крышками вместимостью 1 или 5 дм 3, изготовленные по НТД, или в потребительскую тару по НТД. Полиэтиленовые банки упаковывают в ящики типа П-1 и П-2 по ГОСТ 2991-85. Для предотвращения перемещения банок внутри ящика устанавливают трафарет, вырезанный из полиэтилена или другого материала по форме банок и ящика, или деревянные распорные бруски. Допускается свободное пространство ящиков заполнять опилками, стружкой или ветошью. Размер ящика по ГОСТ 18573-86 и ГОСТ 21140-88 (380x190x304±10), (380x190x317±10) мм, масса брутто не более 50 кг. Ящики должны быть окантованы в соответствии с ГОСТ 2991-85 проволокой по ГОСТ 3282-74 или металлической лентой по ГОСТ 3560-73, скрепленной в "замок" или внахлестку.

Ниобиевый порошок IV класса упаковывают в мешки из полиэтиленовой пленки по ГОСТ 10354-82 толщиной не менее 0,06 мм, изготовленные по НТД или в полиэтиленовые мешки по ГОСТ 17811-78; которые заваривают и упаковывают в стальные барабаны со съемной крышкой, изготовленные по ГОСТ 25750-83, или в ящики типа П-1 и П-2 по ГОСТ 2991-85. Масса ящика брутто должна быть не более 50 кг, масса барабана брутто - не более 500 кг.

По требованию потребителя допускается вкладывать мешок из полиэтиленовой пленки по ГОСТ 10354-82 в потребительскую тару и полиэтиленовые банки.

Для продукции, предназначенной для длительного хранения, документ, удостоверяющий ее качество, должен быть вложен в каждое упаковочное место.

5.2. Транспортная маркировка - по ГОСТ 14192-77* (основные, дополнительные и информационные надписи) с указанием манипуляционного знака "Боится нагрева" и знака опасности груза для класса опасности 4, подкласс 4.1, классификационный шифр 4111 по ГОСТ 19433-88. На крышку каждого ящика или бочки (барабана) наносят маркировку, содержащую:

Документ сохранен с сайта oboronmet.ru — надежный поставщик качественного металлопроката.

* На территории Российской Федерации действует ГОСТ 14192-96. - Примечание изготовителя базы данных. наименование и код продукции по ОКП или условное обозначение, номер партии.
В каждый ящик или барабан вкладывают этикетку с указанием: наименования или шифра продукции; класса порошка; номера партии; массы нетто одного тарного места; даты изготовления; штампа контролера отдела технического контроля;

5.3. Ниобиевый порошок транспортируют мелкими отправками железнодорожным и автомобильным транспортом в крытых транспортных средствах в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

При перевозке двух и более единиц упаковки продукции пакетирование груза - по ГОСТ 21650-76, ГОСТ 24597-81, ГОСТ 26381-84.

5.1-5.3. (Измененная редакция, Изм. N 1).

обозначения настоящего стандарта.

5.4. Ниобиевый порошок хранят в упаковке изготовителя в крытых складских помещениях.

Электронный текст документа подготовлен ЗАО "Кодекс" и сверен по: официальное издание М.: Издательство стандартов, 1990